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4. Rationale:  
Epidemiological evidence suggests that excess sugar-sweetened beverage (SSB) intake is 

associated with increased risk of metabolic syndrome [1, 2] and type 2 diabetes [3]. SSB intake may 
also contribute to weight gain [2, 4, 5], in particular the accumulation of visceral and ectopic fat depots 
[1, 3], associated with greater metabolic dysregulation. Sucrose (table sugar) and high-fructose corn 
syrup are the most common forms of sugar in SSBs, and they are composed of nearly equal amounts of 
glucose and fructose [6]. Evidence from both animal [7] and human studies [8, 9] suggests that the 
fructose moiety is particularly harmful to cardiometabolic health. Given that SSBs are the major dietary 
source of fructose intake in the US, this is of significant public health importance [10].  

Over the past three decades, the prevalence of type 2 diabetes has been steadily increasing 
worldwide with an estimated 8.5% (422 million) adults having this chronic disease in 2014 [11].  
Currently, an estimated 37% of US adults have prediabetes with underlying insulin resistance, 
indicative of a trajectory path to diabetes that could be altered by lifestyle changes [12]. Excess sugar 
intake, particularly in the form of sugar-sweetened beverage, may impair glucose homeostasis. A recent 
meta-analysis of 17 cohorts found that daily intake of SSBs was associated with a 13% greater risk of 
T2D, independent of overall adiposity [3]. A few studies have linked SSB intake to measures of 
glucose and insulin metabolism [13-15], yet the influence of genetic variation to the underlying 
susceptibility of SSB induced metabolic disease in humans remains unknown.     

Carbohydrate Responsive Element-Binding Protein (ChREBP, also known as Mlxipl) is a 
transcription factor that responds to intracellular carbohydrate metabolites and is a principal mediator 
of carbohydrate-induced gene expression in key metabolic tissues including the liver [2, 16-18]. Recent 
data indicate that hepatic ChREBP is particularly responsive to fructose intake [19] and contributes to 
fructose-induced metabolic diseases [20]. We have recently demonstrated that fructose ingestion 
acutely increases circulating levels of the novel metabolic hormone fibroblast growth factor 21 
(FGF21) in a hormone-like manner [21]. FGF21 has pleiotropic effects on carbohydrate and lipid 
metabolism [22]. We and others have recently reported that single nucleotide polymorphisms (SNPs) in 
the FGF21 locus which associate with higher circulating FGF21 concentrations also associate with 
higher carbohydrate intake relative to fat in humans [23, 24]. Moreover, it has recently been confirmed 
in rodents and non-human primates that sucrose-induced FGF21 regulates sweet taste preference [25, 
26]. Together, these data indicate that a ChREBP-FGF21 hormonal axis mediates an adaptive response 
to sugar consumption and may contribute to regulation of metabolic traits in the context of sugar 
consumption. 

To date, no gene-diet study has examined interactions between SSBs and genes on indices of 
carbohydrate metabolism. We hypothesized that common SNPs associated with genes involved in 
fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to influence 
glycemic traits. The study will include up to 34,748 participants of European descent from the 
following 11 US and European cohort studies (6 discovery cohorts and 5 replication cohorts) of the 
CHARGE Consortium Nutrition Working Group. Aric will be part of the replication aspect. 
    
 
5. Main Hypothesis/Study Questions: 
 
The aim of the current investigation is to (1) evaluate the relationship between SSB intake and fasting 
plasma glucose (FG) and fasting insulin (FI) in 11 cohorts from the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) Consortium totaling 34,748 subjects and (2) to 
examine whether these associations were modified by SNPs related to ChREBP function.    
 



6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest 

with specific reference to the time of their collection, summary of data analysis, and any 

anticipated methodologic limitations or challenges if present). 

 
Study design:  

A. Subjects and Sample Size  

 
Discovery Cohorts 

The discovery cohorts were Cardiovascular Heart Study (CHS), Framingham Heart Study (FHS), 
Multi-Ethnic Study of Atherosclerosis (MESA), Rotterdam Study I (RS1), Rotterdam Study II (RS2), 
and the Cardiovascular Risk in Young Finns Study (YFS). 
 
Replication cohorts  

 The replication cohorts will include Atherosclerosis Risk In Communities (ARIC) Study, Malmö 
Study, Netherlands Epidemiology in Obesity (NEO) Study, Nurses’ Health Study (NHS), and Western 
Australia Pregnancy Cohort (Raine) Study.  
 
For the ARIC replication data set, the study participants will include European Americans (N=8,758) 
who have provided informed consent and have measured fasting insulin, glucose profiles, genetic data, 
and sugar-sweetened beverage (SSB) data at visit 1. 
 
Inclusion:  
- Adults of  18 years of age 
- European ancestry 
 
Sugar-sweetened beverages:  

One serving of SSB is defined as 360 ml or 12 fl. oz., and included the following: (1) Coke, 
Pepsi, or other cola with sugar; (2) caffeine free Coke, Pepsi, or other cola with sugar; (3) other 
carbonated beverage with sugar (e.g., 7-Up, ginger ale); (4) Hawaiian Punch, lemonade, or other non-
carbonated fruit drinks. Fruit intake, vegetable intake, whole grain intake, and fish intake in 
servings/day, alcohol intake in grams/day, and saturated fatty acid as percentage of total energy intake 
(where 1 g saturated fat has 9 kcal) were further quantified and used as covariates in the present 
analysis. SSB intake will be used continuously and further dichotomized into low (<1 serving/day) and 
high (≥1 serving/day) intakes, whereas all remaining dietary variables were considered continuously 
only.  

 
Outcome: 
Glycemic biomarkers, fasting glucose and insulin, will be used if measured after ≥8 hours of fasting.  
 

Genotype data: 
- For the discovery results, SNPs were selected that previously showed genome-wide (i.e. P <5E-08) or 
sub-genome-wide (i.e. P <5E-06) significant associations with hypertriglyceridemia or low-HDL 
cholesterol in humans and were found within the ChREBP locus or within the loci of genes predicted to 
regulate either ChREBP or the biological response to ChREBP activation.   
 
For replication in ARIC, we will use SNPs that met nominal significance in the interaction results 
based on the discovery findings. We will pull these SNPs from imputed data based on HapMap II. 
 
Summary data analysis: 



Analytical Methods in Parent Study 

In the discovery cohorts, inverse-variance weighted, random-effect meta-analyses were 
conducted using the ‘metafor’ R package for 1) main associations of SSB-intake on FG and FI, and 
fixed-effect meta-analyses using METAL (version released 2011-03-25) for 2) main associations of the 
selected SNPs on outcomes, and 3) interactions between SNPs and SSB intake on outcomes. Statistical 
significance for association/interaction tests was defined at a level of 0.001, based on Bonferroni 
correction for 36 (=18 independent SNPs x 2 glycemic outcomes) total tests.  

Analytical Methods for Replication in ARIC 

 

For nominally significant interaction results (i.e. P <0.05) from the discovery cohorts analyses, 
we will further investigate via meta-analysis in replication cohorts the 1) main effect associations of 
SSB intake with FG and FI concentrations, 2) main associations between nominally significant SNPs 
and glycemic outcomes, and 3) interactions between SSB intake and nominally significant SNPs on 
glycemic outcomes.  
 

Analytical Methods for Meta-Analysis with other HCHS/SOL Replication Cohorts 

Finally, we will further conduct joint meta-analyses (combined discovery cohorts and 
replication cohorts) for the described analyses. Heterogeneity across studies will be tested by using 
Cochran’s Q statistic and quantified using the I2 statistic. Analyses with moderate heterogeneity (I2 
>30%) will be further assessed for potential sources of heterogeneity by conducting meta-regression 
and sensitivity analyses. Meta-regression analyses were conducted using the R metafor package (R 
version 3.1.0) to assess the effect of the following moderator variables on heterogeneity of 
association/interaction: geographical location (U.S. vs. northern Europe vs. Australian), BMI (<27 vs. 
≥27 kg/m2), and sample size (n <1000 vs. ≥1000).  
 
 

A. Example Figures and Tables for Manuscript 

Meta-analyzed interactions between SSB and SNPs on glycemic traits in discovery cohorts 

 

    Fasting Glucose  
(mmol/L) 

 Fasting Insulin  
(ln-pmol/L) 

SNP Chr Gene Alleles† β (SE) P  β (SE) P 
rs10819937 9 ALDOB C/G -0.0067 (0.0147) 0.65  -0.0025 (0.0152) 0.87 
rs10819931 9 ALDOB T/C -0.0229 (0.0215) 0.29  0.0023 (0.0212) 0.92 
rs174546 11 FADS1 T/C 0.0018 (0.0116) 0.87  0.0070 (0.0115) 0.54 
rs838133 19 FGF21 A/G -0.0149 (0.0128) 0.24  -0.0176 (0.013) 0.17 
rs4607517 7 GCK A/G -0.0020 (0.0145) 0.89  0.0101 (0.0144) 0.48 
rs1260326   2 GCKR C/T -0.0015 (0.0105) 0.89  -0.0088 (0.0104) 0.40 
rs2119026 2 KHK C/T -0.0111 (0.0119) 0.35  0.0059 (0.0119) 0.62 
rs1542423 4 KLB T/C -0.0105 (0.0111) 0.34  0.0302 (0.0110) 0.006 

rs799166 7 MLXIPL C/G -0.0084 (0.0175) 0.63  0.0183 (0.0187) 0.33 
rs799168  7 MLXIPL G/A -0.0229 (0.0164) 0.16  0.0173 (0.0176) 0.33 
rs799160   7 MLXIPL T/C -0.0149 (0.0159) 0.35  0.0091 (0.0165) 0.58 
rs11974409  7 TBL2 A/G -0.0095 (0.0139) 0.50  0.0086 (0.0144) 0.55 
rs11920090 3 SLC2A2 A/T 0.0214 (0.0165) 0.19  0.0123 (0.0165) 0.46 
rs11924032 3 SLC2A2 A/G 0.0142 (0.0117) 0.23  -0.0023 (0.0117) 0.84 
rs5438 1 SLC2A5 A/G 0.0220 (0.0283) 0.78  -0.011 (0.0283) 0.70 
rs3820034 1 SLC2A5 C/T 0.0140 (0.0140) 0.32  0.0009 (0.0142) 0.95 
rs5840 1 SLC2A5 T/C 0.0109 (0.0112) 0.33  0.0002 (0.0112) 0.98 

rs2954029 8 TRIB1 A/T 0.0186 (0.0111) 0.09  0.0069 (0.0112) 0.54 



 
Example Table 2. List of all SNPxSSB interactions on the indicated glycemic trait. 
 

 
 
Example Table 3. Significant loci that reach P<5E-8 from the meta-analysis of the discovery plus 
replication data sets.  
 

 
 
 
  

Trait SNP Chr Gene Alleles† n β (SE) P I 2 n β (SE) P I 2 n β (SE) P I 2

Fasting 

Glucose
rs10819937 9 ALDOB C/G 15590

0.0302 

(0.011)
0.006 0%

Fasting 

Glucose
rs10819931 9 ALDOB T/C 15590

0.0230 

(0.0140)
0.1 0%

Fasting 

Insulin
rs838133 19 FGF21 A/G 15590

0.0308 

(0.0180)
0.09 0%

Fasting 

Insulin
rs1542423 4 KLB T/C 15590

0.0340 

(0.0302)
0.26 0%

Discovery Cohorts Replication Cohorts All Cohorts



Example Figure 1. Example forest plot of main association between SSB intake and glycemic trait. 
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